Error Bound of Mode-Based Additive Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Batch-Mode Active Learning via Error Bound Minimization

Active learning has been proven to be quite effective in reducing the human labeling efforts by actively selecting the most informative examples to label. In this paper, we present a batch-mode active learning method based on logistic regression. Our key motivation is an out-of-sample bound on the estimation error of class distribution in logistic regression conditioned on any fixed training sa...

متن کامل

Testing Additive Separability of Error Term in Nonparametric Structural Models

This paper considers testing additive error structure in nonparametric structural models, against the alternative hypothesis that the random error term enters the nonparametric model non-additively. We propose a test statistic under a set of identification conditions considered by Hoderlein, Su and White (2012), which require the existence of a control variable such that the regressor is indepe...

متن کامل

Error Variance Estimation in Ultrahigh Dimensional Additive Models

Error variance estimation plays an important role in statistical inference for high dimensional regression models. This paper concerns with error variance estimation in high dimensional sparse additive model. We study the asymptotic behavior of the traditional mean squared errors, the naive estimate of error variance, and show that it may significantly underestimate the error variance due to sp...

متن کامل

Estimating the error distribution function in semiparametric additive regression models

We consider semiparametric additive regression models with a linear parametric part and a nonparametric part, both involving multivariate covariates. For the nonparametric part we assume two models. In the first, the regression function is unspecified and smooth; in the second, the regression function is additive with smooth components. Depending on the model, the regression curve is estimated ...

متن کامل

Empirical Likelihood based Inference for Additive Partial Linear Measurement Error Models.

This paper considers statistical inference for additive partial linear models when the linear covariate is measured with error. To improve the accuracy of the normal approximation based confidence intervals, we develop an empirical likelihood based statistic, which is shown to be asymptotically chi-square distributed. We emphasize the finite-sample performance of the proposed method by conducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2021

ISSN: 1099-4300

DOI: 10.3390/e23060651